skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Minxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The randomized Kaczmarz methods are a popular and effective family of iterative methods for solving large-scale linear systems of equations, which have also been applied to linear feasibility problems. In this work, we propose a new block variant of the randomized Kaczmarz method, B-MRK, for solving linear feasibility problems defined by matrices. We show that B-MRK converges linearly in expectation to the feasible region. Furthermore, we extend the method to solve tensor linear feasibility problems defined under the tensor t-product. A tensor randomized Kaczmarz (TRK) method, TRK-L, is proposed for solving linear feasibility problems that involve mixed equality and inequality constraints. Additionally, we introduce another TRK method, TRK-LB, specifically tailored for cases where the feasible region is defined by linear equality constraints coupled with bound constraints on the variables. We show that both of the TRK methods converge linearly in expectation to the feasible region. Moreover, the effectiveness of our methods is demonstrated through numerical experiments on various Gaussian random data and applications in image deblurring. 
    more » « less